Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 357
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Food Funct ; 15(3): 1355-1368, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38205834

RESUMEN

Dietary nutritional support for special populations is an effective and feasible method to improve the quality of life of patients and reduce medical pressure. Acer truncatum Bunge seed oil (ATSO) is widely recognized for its ability to promote nerve myelin regeneration. To evaluate the ameliorative effects of ATSO on chemotherapy-induced demyelination, a zebrafish model of chemotherapy-induced demyelination was established. The results showed that 100 µg mL-1 of ATSO reversed tail morphology damage, axon degeneration, touch response delay, ROS level upregulation and the expression of myelin basic protein decrease in chemotherapy-induced zebrafish. In addition, the expression of myelin markers (including sox10, krox20, and pmp22) in oxaliplatin-induced cells was markedly reversed by ATSO and its active components (gondoic acid, erucic acid, and nervonic acid). ATSO and its active components could reverse demyelination by ameliorating mitochondrial dysfunction. Conversely, linoleic acid and linolenic acid promoted demyelination by exacerbating mitochondrial dysfunction. Moreover, the Pink1/Parkin pathway was recognized as the main reason for ATSO and its active components improving mitochondrial function by activating mitophagy and restoring autophagic flow. Taken together, this study demonstrated that ATSO and its active components could be further developed as novel functional food ingredients to antagonize demyelination.


Asunto(s)
Acer , Antineoplásicos , Enfermedades Desmielinizantes , Enfermedades Mitocondriales , Animales , Humanos , Mitofagia , Oxaliplatino/farmacología , Pez Cebra/metabolismo , Calidad de Vida , Semillas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Aceites de Plantas/farmacología , Antineoplásicos/farmacología , Proteínas Serina-Treonina Quinasas
2.
Brain ; 147(4): 1206-1215, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38085047

RESUMEN

Low serum levels of 25-hydroxyvitamin D [25(OH)D] and low sunlight exposure are known risk factors for the development of multiple sclerosis. Add-on vitamin D supplementation trials in established multiple sclerosis have been inconclusive. The effects of vitamin D supplementation to prevent multiple sclerosis is unknown. We aimed to test the hypothesis that oral vitamin D3 supplementation in high-risk clinically isolated syndrome (abnormal MRI, at least three T2 brain and/or spinal cord lesions), delays time to conversion to definite multiple sclerosis, that the therapeutic effect is dose-dependent, and that all doses are safe and well tolerated. We conducted a double-blind trial in Australia and New Zealand. Eligible participants were randomized 1:1:1:1 to placebo, 1000, 5000 or 10 000 international units (IU) of oral vitamin D3 daily within each study centre (n = 23) and followed for up to 48 weeks. Between 2013 and 2021, we enrolled 204 participants. Brain MRI scans were performed at baseline, 24 and 48 weeks. The main study outcome was conversion to clinically definite multiple sclerosis based on the 2010 McDonald criteria defined as either a clinical relapse or new brain MRI T2 lesion development. We included 199 cases in the intention-to-treat analysis based on assigned dose. Of these, 116 converted to multiple sclerosis by 48 weeks (58%). Compared to placebo, the hazard ratios (95% confidence interval) for conversion were 1000 IU 0.87 (0.50, 1.50); 5000 IU 1.37 (0.82, 2.29); and 10 000 IU 1.28 (0.76, 2.14). In an adjusted model including age, sex, latitude, study centre and baseline symptom number, clinically isolated syndrome onset site, presence of infratentorial lesions and use of steroids, the hazard ratios (versus placebo) were 1000 IU 0.80 (0.45, 1.44); 5000 IU 1.36 (0.78, 2.38); and 10 000 IU 1.07 (0.62, 1.85). Vitamin D3 supplementation was safe and well tolerated. We did not demonstrate reduction in multiple sclerosis disease activity by vitamin D3 supplementation after a high-risk clinically isolated syndrome.


Asunto(s)
Enfermedades Desmielinizantes , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/tratamiento farmacológico , Vitamina D/uso terapéutico , Vitaminas/uso terapéutico , Colecalciferol/uso terapéutico , Colecalciferol/efectos adversos , Calcifediol , Enfermedades Desmielinizantes/diagnóstico por imagen , Enfermedades Desmielinizantes/tratamiento farmacológico , Método Doble Ciego
3.
J Neurotrauma ; 41(3-4): 499-513, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37795561

RESUMEN

Blast exposure causes serious complications, the most common of which are ear-related symptoms such as hearing loss and tinnitus. The blast shock waves can cause neurodegeneration of the auditory pathway in the brainstem, as well as the cochlea, which is the primary receptor for hearing, leading to blast-induced tinnitus. However, it is still unclear which lesion is more dominant in triggering tinnitus, the peripheral cochlea or the brainstem lesion owing to the complex pathophysiology and the difficulty in objectively measuring tinnitus. Recently, gap detection tests have been developed and are potentially well-suited for determining the presence of tinnitus. In this study, we investigated whether the peripheral cochlea or the central nervous system has a dominant effect on the generation of tinnitus using a blast-exposed mouse model with or without earplugs, which prevent cochlear damage from a blast transmitted via the external auditory canal. The results showed that the earplug (+) group, in which the cochlea was neither physiologically nor histologically damaged, showed a similar extent of tinnitus behavior in a gap prepulse inhibition of acoustic startle reflex test as the earplug (-) group, in which the explosion caused a cochlear synaptic loss in the inner hair cells and demyelination of auditory neurons. In contrast, both excitatory synapses labeled with VGLUT-1 and inhibitory synapses labeled with GAD65 were reduced in the ventral cochlear nucleus, and demyelination in the medial nucleus of the trapezoid body was observed in both groups. These disruptions significantly correlated with the presence of tinnitus behavior regardless of cochlear damage. These results indicate that the lesion in the brainstem could be dominant to the cochlear lesion in the development of tinnitus following blast exposure.


Asunto(s)
Enfermedades Desmielinizantes , Acúfeno , Ratones , Animales , Acúfeno/etiología , Acúfeno/diagnóstico , Estimulación Acústica/efectos adversos , Estimulación Acústica/métodos , Explosiones , Cóclea/patología
4.
Front Immunol ; 14: 1290100, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022538

RESUMEN

Background: Spinal cord injury (SCI) is a devastating disease that results in permanent paralysis. Currently, there is no effective treatment for SCI, and it is important to identify factors that can provide therapeutic intervention during the course of the disease. Zinc, an essential trace element, has attracted attention as a regulator of inflammatory responses. In this study, we investigated the effect of zinc status on the SCI pathology and whether or not zinc could be a potential therapeutic target. Methods: We created experimental mouse models with three different serum zinc concentration by changing the zinc content of the diet. After inducing contusion injury to the spinal cord of three mouse models, we assessed inflammation, apoptosis, demyelination, axonal regeneration, and the number of nuclear translocations of NF-κB in macrophages by using qPCR and immunostaining. In addition, macrophages in the injured spinal cord of these mouse models were isolated by flow cytometry, and their intracellular zinc concentration level and gene expression were examined. Functional recovery was assessed using the open field motor score, a foot print analysis, and a grid walk test. Statistical analysis was performed using Wilcoxon rank-sum test and ANOVA with the Tukey-Kramer test. Results: In macrophages after SCI, zinc deficiency promoted nuclear translocation of NF-κB, polarization to pro-inflammatory like phenotype and expression of pro-inflammatory cytokines. The inflammatory response exacerbated by zinc deficiency led to worsening motor function by inducing more apoptosis of oligodendrocytes and demyelination and inhibiting axonal regeneration in the lesion site compared to the normal zinc condition. Furthermore, zinc supplementation after SCI attenuated these zinc-deficiency-induced series of responses and improved motor function. Conclusion: We demonstrated that zinc affected axonal regeneration and motor functional recovery after SCI by negatively regulating NF-κB activity and the subsequent inflammatory response in macrophages. Our findings suggest that zinc supplementation after SCI may be a novel therapeutic strategy for SCI.


Asunto(s)
Enfermedades Desmielinizantes , Traumatismos de la Médula Espinal , Ratones , Animales , FN-kappa B/metabolismo , Traumatismos de la Médula Espinal/patología , Macrófagos/metabolismo , Modelos Animales de Enfermedad , Minerales/uso terapéutico , Zinc/metabolismo , Enfermedades Desmielinizantes/metabolismo
5.
Hum Exp Toxicol ; 42: 9603271231188970, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37553751

RESUMEN

Riboflavin deficiency produces severe peripheral neve demyelination in young, rapidly growing chickens. While this naturally-occurring vitamin B2 deficiency can cause a debilitating peripheral neuropathy, and mortality, in poultry flocks, it can also be a useful experimental animal model to study the pathogenesis of reliably reproducible peripheral nerve demyelination. Moreover, restitution of normal riboflavin levels in deficient birds results in brisk remyelination. It is the only acquired, primary, demyelinating tomaculous neuropathy described to date in animals. The only other substance that causes peripheral nerve demyelination similar to avian riboflavin deficiency is tellurium and the pathologic features of the peripheral neuropathy produced by this developmental neurotoxin in weanling rats are also described.


Asunto(s)
Enfermedades Desmielinizantes , Enfermedades del Sistema Nervioso Periférico , Remielinización , Deficiencia de Riboflavina , Animales , Ratas , Deficiencia de Riboflavina/complicaciones , Deficiencia de Riboflavina/patología , Deficiencia de Riboflavina/veterinaria , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/patología , Pollos , Nervios Periféricos/patología , Enfermedades del Sistema Nervioso Periférico/etiología , Enfermedades del Sistema Nervioso Periférico/patología , Enfermedades del Sistema Nervioso Periférico/veterinaria , Suplementos Dietéticos , Vitaminas
6.
Molecules ; 28(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37570807

RESUMEN

Myelin repair, which is known as remyelination, is critical to the treatment of neurodegenerative diseases, and myelination depends on not only the differentiation of oligodendrocyte precursor cells toward oligodendrocytes but also the renewal of oligodendrocyte precursor cells under pathological conditions. However, simultaneously promoting the differentiation and proliferation of oligodendrocyte precursor cells in lesions remains an unmet challenge and might affect demyelinating diseases. Kidney-tonifying herbs of traditional Chinese medicine (TCM) are effective in improving the symptoms of degenerative patients. However, herbs or compounds with dual functions are unverified. The purpose of this study was to find a kidney-tonifying TCM that synchronously improved the differentiation and proliferation of oligodendrocyte precursor cells under pathological conditions. Compounds with dual functions were screened from highly frequently used kidney-tonifying TCM, and the effects of the obtained compound on remyelination were investigated in an in vitro oligodendrocyte precursor cell differentiation model under pathological conditions and in demyelinating mice in vivo. The compound icaritin, which is an active component of Yin-Yang-Huo (the leaves of Epimedium brevicornu Maxim), demonstrated multiple effects on the remyelination process, including enhancing oligodendrocyte precursor cell proliferation, facilitating the differentiation of neural progenitor cells toward oligodendrocyte precursor cells and further toward oligodendrocytes, and maturation of oligodendrocytes under corticosterone- or glutamate-induced pathological conditions. Importantly, icaritin effectively rescued behavioral functions and increased the formation of myelin in a cuprizone-induced demyelination mouse model. The multiple effects of icaritin make it a promising lead compound for remyelination therapy.


Asunto(s)
Enfermedades Desmielinizantes , Células Precursoras de Oligodendrocitos , Ratones , Animales , Células Precursoras de Oligodendrocitos/patología , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/patología , Diferenciación Celular , Proliferación Celular , Ratones Endogámicos C57BL
7.
Ultrastruct Pathol ; 47(5): 398-423, 2023 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-37477534

RESUMEN

BACKGROUND AND AIM: A murine model mimicking osmotic demyelination syndrome (ODS) revealed with histology in the relay posterolateral (VPL) and ventral posteromedial (VPM) thalamic nuclei adjoined nerve cell bodies in chronic hyponatremia, amongst the damaged 12 h and 48 h after reinstatement of osmolality. This report aims to verify and complement with ultrastructure other neurophysiology, immunohistochemistry, and molecular biochemistry data to assess the connexin-36 protein, as part of those hinted close contacts.This ODS investigation included four groups of mice: Sham (NN; n = 13), hyponatremic (HN; n = 11), those sacrificed 12 h after a fast restoration of normal natremia (ODS12h; n = 6) and mice sacrificed 48 h afterward, or ODS48 h (n = 9). Out of these, thalamic zones samples included NN (n = 2), HN (n = 2), ODS12h (n = 3) and ODS48h (n = 3). RESULTS: Ultrastructure illustrated junctions between nerve cell bodies that were immunolabeled with connexin36 (Cx36) with light microscopy and Western blots. These cell's junctions were reminiscent of low resistance junctions characterized in other regions of the CNS with electrophysiology. Contiguous neurons showed neurolemma contacts in intact and damaged tissues according to their location in the ODS zones, at 12 h and 48 h post correction along with other demyelinating alterations. Neurons and ephaptic contact measurements indicated the highest alterations, including nerve cell necrosis in the ODS epicenter and damages decreased toward the outskirts of the demyelinated zone. CONCLUSION: Ephapses contained C × 36between intact or ODS injured neurons in the thalamus appeared to be resilient beyond the core degraded tissue injuries. These could maintain intercellular ionic and metabolite exchanges between these lesser injured regions and, thus, would partake to some brain plasticity repairs.


Asunto(s)
Enfermedades Desmielinizantes , Neurilema , Tálamo , Tálamo/ultraestructura , Animales , Ratones , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Neuronas/química , Neuronas/ultraestructura , Neurilema/química , Neurilema/ultraestructura , Conexinas/análisis , Masculino , Ratones Endogámicos C57BL , Western Blotting , Proteína delta-6 de Union Comunicante
8.
Neurochem Res ; 48(7): 2138-2147, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36808020

RESUMEN

Cuprizone causes consistent demyelination and oligodendrocyte damage in the mouse brain. Cu,Zn-superoxide dismutase 1 (SOD1) has neuroprotective potential against various neurological disorders, such as transient cerebral ischemia and traumatic brain injury. In this study, we investigated whether SOD1 has neuroprotective effects against cuprizone-induced demyelination and adult hippocampal neurogenesis in C57BL/6 mice, using the PEP-1-SOD1 fusion protein to facilitate the delivery of SOD1 protein into hippocampal neurons. Eight weeks feeding of cuprizone-supplemented (0.2%) diets caused a significant decrease in myelin basic protein (MBP) expression in the stratum lacunosum-moleculare of the CA1 region, the polymorphic layer of the dentate gyrus, and the corpus callosum, while ionized calcium-binding adapter molecule 1 (Iba-1)-immunoreactive microglia showed activated and phagocytic phenotypes. In addition, cuprizone treatment reduced proliferating cells and neuroblasts as shown using Ki67 and doublecortin immunostaining. Treatment with PEP-1-SOD1 to normal mice did not show any significant changes in MBP expression and Iba-1-immunoreactive microglia. However, Ki67-positive proliferating cells and doublecortin-immunoreactive neuroblasts were significantly decreased. Simultaneous treatment with PEP-1-SOD1 and cuprizone-supplemented diets did not ameliorate the MBP reduction in these regions, but mitigated the increase of Iba-1 immunoreactivity in the corpus callosum and alleviated the reduction of MBP in corpus callosum and proliferating cells, not neuroblasts, in the dentate gyrus. In conclusion, PEP-1-SOD1 treatment only has partial effects to reduce cuprizone-induced demyelination and microglial activation in the hippocampus and corpus callosum and has minimal effects on proliferating cells in the dentate gyrus.


Asunto(s)
Cuprizona , Enfermedades Desmielinizantes , Animales , Ratones , Cuprizona/toxicidad , Superóxido Dismutasa-1/metabolismo , Microglía/metabolismo , Antígeno Ki-67/metabolismo , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/genética , Ratones Endogámicos C57BL , Hipocampo/metabolismo , Neurogénesis , Cuerpo Calloso , Proteínas de Dominio Doblecortina , Zinc/metabolismo , Modelos Animales de Enfermedad
9.
Exp Mol Med ; 55(1): 215-227, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36635431

RESUMEN

Conflicting results on melatonin synthesis in multiple sclerosis (MS) have been reported due to variabilities in patient lifestyles, which are not considered when supplementing melatonin. Since melatonin acts through its receptors, we identified melatonin receptors in oligodendrocytes (OLs) in the corpus callosum, where demyelination occurs; the subventricular zone, where neural stem/progenitor cells (NSPCs) are located; and the choroid plexus, which functions as a blood-cerebrospinal fluid barrier. Moreover, using chimeric mice, resident macrophages were found to express melatonin receptors, whereas bone marrow-derived macrophages lost this expression in the demyelinated brain. Next, we showed that cuprizone-fed mice, which is an MS model, tended to have increased melatonin levels. While we used different approaches to alter the circadian rhythm of melatonin and cortisol, only the constant light approach increased NSPC proliferation and differentiation to oligodendrocyte precursor cells (OPCs), OPCs maturation to OLs and recruitment to the site of demyelination, the number of patrolling monocytes, and phagocytosis. In contrast, constant darkness and exogenous melatonin exacerbated these events and amplified monocyte infiltration. Therefore, melatonin should not be considered a universal remedy, as is currently claimed. Our data emphasize the importance of monitoring melatonin/cortisol oscillations in each MS patient by considering diet and lifestyle to avoid melatonin overdose.


Asunto(s)
Enfermedades Desmielinizantes , Melatonina , Monocitos , Esclerosis Múltiple , Vaina de Mielina , Fagocitosis , Animales , Ratones , Diferenciación Celular , Enfermedades Desmielinizantes/inmunología , Enfermedades Desmielinizantes/metabolismo , Modelos Animales de Enfermedad , Hidrocortisona , Melatonina/farmacología , Ratones Endogámicos C57BL , Monocitos/inmunología , Monocitos/metabolismo , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Fagocitosis/inmunología , Receptores de Melatonina , Vaina de Mielina/metabolismo
10.
Clin Nucl Med ; 48(1): 52-53, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36240840

RESUMEN

ABSTRACT: A 60-year-old man with chronic alcoholism for 30 years was admitted to the hospital for an acute alcoholic syndrome with global confusional state, cognitive disorders, and ataxia. MRI detected bilateral mamillary bodies T 2 hypersignal related to Wernicke encephalopathy. It was treated by oral thiamine supplementation with clinical improvement. Two months later, he was rehospitalized for rapidly progressive dementia symptoms. Brain perfusion scintigraphy revealed pontine hyperperfusion and right hippocampal hypoperfusion. One month after IV thiamine supplementation, brain perfusion scintigraphy showed normalization of perfusion abnormalities in the pons and right hippocampus, leading to the diagnosis of alcoholic-related osmotic demyelination syndrome.


Asunto(s)
Enfermedades Desmielinizantes , Encefalopatía de Wernicke , Masculino , Humanos , Persona de Mediana Edad , Tiamina/uso terapéutico , Encéfalo/diagnóstico por imagen , Perfusión , Enfermedades Desmielinizantes/diagnóstico por imagen
11.
Proc Natl Acad Sci U S A ; 120(1): e2209990120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36577069

RESUMEN

Microglia play a critical role in the clearance of myelin debris, thereby ensuring functional recovery from neural injury. Here, using mouse model of demyelination following two-point LPC injection, we show that the microglial autophagic-lysosomal pathway becomes overactivated in response to severe demyelination, leading to lipid droplet accumulation and a dysfunctional and pro-inflammatory microglial state, and finally failed myelin debris clearance and spatial learning deficits. Data from genetic approaches and pharmacological modulations, via microglial Atg5 deficient mice and intraventricular BAF A1 administration, respectively, demonstrate that staged suppression of excessive autophagic-lysosomal activation in microglia, but not sustained inhibition, results in better myelin debris degradation and exerts protective effects against demyelination. Combined multi-omics results in vitro further showed that enhanced lipid metabolism, especially the activation of the linoleic acid pathway, underlies this protective effect. Supplementation with conjugated linoleic acid (CLA), both in vivo and in vitro, could mimic these effects, including attenuating inflammation and restoring microglial pro-regenerative properties, finally resulting in better recovery from demyelination injuries and improved spatial learning function, by activating the peroxisome proliferator-activated receptor (PPAR-γ) pathway. Therefore, we propose that pharmacological inhibition targeting microglial autophagic-lysosomal overactivation or supplementation with CLA could represent a potential therapeutic strategy in demyelinated disorders.


Asunto(s)
Enfermedades Desmielinizantes , Microglía , Ratones , Animales , Microglía/metabolismo , Ácido Linoleico/metabolismo , Autofagia , Enfermedades Desmielinizantes/metabolismo , Regeneración
12.
Med Gas Res ; 13(1): 23-28, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35946219

RESUMEN

Demyelination of the cerebral white matter is the most common pathological change after carbon monoxide (CO) poisoning. Notch signaling, the mechanism underlying the differentiation of astrocytes and oligodendrocytes, is critical to remyelination of the white matter after brain lesion. The purpose of this work was to determine the effects of hyperbaric oxygen (HBO) on Notch signaling pathway after CO poisoning for the explanation of the protective effects of HBO on CO-poisoning-related cerebral white matter demyelination. The male C57 BL/6 mice with severe CO poisoning were treated by HBO. And HBO therapy shortened the escape latency and improved the body mass after CO poisoning. HBO therapy also significantly suppressed protein and mRNA levels of Notch1 and Hes5 after CO poisoning. Our findings suggested that HBO could suppress the activation of Notch signaling pathway after CO poisoning, which is the mechanism underlying the neuroprotection of HBO on demyelination after severe CO poisoning.


Asunto(s)
Intoxicación por Monóxido de Carbono , Enfermedades Desmielinizantes , Oxigenoterapia Hiperbárica , Animales , Intoxicación por Monóxido de Carbono/terapia , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/terapia , Masculino , Ratones , Oxígeno , Transducción de Señal
13.
Int J Med Mushrooms ; 24(9): 15-24, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36004706

RESUMEN

Epidemiologic studies have shown a high prevalence of multiple sclerosis (MS) in Europe and North America, and a low prevalence in East Asia. Mushrooms contain various biological response modifiers (BRMs) and are widely used in traditional Chinese medicine in East Asian countries. To investigate whether mushrooms have potential beneficial effects on MS, we administered mushrooms to cuprizone (bis-cyclohexanone-oxalyldihydrazone, CPZ)-induced MS model mice. This model is used to study the processes of demyelination in the CNS. The CPZ-induced demyelination is involved in the apoptotic death of mature oligodendrocytes, neuroinflammation, and motor dysfunction. Mice were fed a powdered diet containing 5% each mushroom and CPZ diet for 5 weeks, which coincides with peak demyelination. We measured the body weight of the mice, evaluated their motor function using a rotarod, and quantified the myelin levels using Black-Gold II staining. Ganoderma lucidum and Hericium erinaceus treatments showed recovery from weight loss. Pleurotus eryngii, G. lucidum, and Flammulina velutipes treatments significantly improved CPZ-induced motor dysfunction. P. eryngii, G. lucidum, F. velutipes, and H. erinaceus treatments effectively suppressed CPZ-induced demyelination. The four medicinal mushrooms may be promising BRMs for prevention and alleviation of the symptoms of MS.


Asunto(s)
Agaricales , Enfermedades Desmielinizantes , Esclerosis Múltiple , Animales , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/tratamiento farmacológico , Modelos Animales de Enfermedad , Cuerpos Fructíferos de los Hongos , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/inducido químicamente , Esclerosis Múltiple/tratamiento farmacológico
14.
Am J Chin Med ; 50(6): 1565-1597, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35902245

RESUMEN

Currently, therapies for ischemic stroke are limited. Ginkgolides, unique Folium Ginkgo components, have potential benefits for ischemic stroke patients, but there is little evidence that ginkgolides improve neurological function in these patients. Clinical studies have confirmed the neurological improvement efficacy of diterpene ginkgolides meglumine injection (DGMI), an extract of Ginkgo biloba containing ginkgolides A (GA), B (GB), and K (GK), in ischemic stroke patients. In the present study, we performed transcriptome analyses using RNA-seq and explored the potential mechanism of ginkgolides in seven in vitro cell models that mimic pathological stroke processes. Transcriptome analyses revealed that the ginkgolides had potential antiplatelet properties and neuroprotective activities in the nervous system. Specifically, human umbilical vein endothelial cells (HUVEC-T1 cells) showed the strongest response to DGMI and U251 human glioma cells ranked next. The results of pathway enrichment analysis via gene set enrichment analysis (GSEA) showed that the neuroprotective activities of DGMI and its monomers in the U251 cell model were related to their regulation of the sphingolipid and neurotrophin signaling pathways. We next verified these in vitro findings in an in vivo cuprizone (CPZ, bis(cyclohexanone)oxaldihydrazone)-induced model. GB and GK protected against demyelination in the corpus callosum (CC) and promoted oligodendrocyte regeneration in CPZ-fed mice. Moreover, GB and GK antagonized platelet-activating factor (PAF) receptor (PAFR) expression in astrocytes, inhibited PAF-induced inflammatory responses, and promoted brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) secretion, supporting remyelination. These findings are critical for developing therapies that promote remyelination and prevent stroke progression.


Asunto(s)
Enfermedades Desmielinizantes , Diterpenos , Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Accidente Cerebrovascular , Animales , Astrocitos/metabolismo , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/metabolismo , Diterpenos/farmacología , Diterpenos/uso terapéutico , Células Endoteliales , Ginkgo biloba , Ginkgólidos/metabolismo , Ginkgólidos/farmacología , Ginkgólidos/uso terapéutico , Humanos , Lactonas/farmacología , Ratones , Fármacos Neuroprotectores/farmacología , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/genética
15.
J Chem Neuroanat ; 123: 102120, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35718292

RESUMEN

Demyelinating diseases, such as multiple sclerosis, decrease the quality of life of patients and can affect reproduction. Assisted reproductive therapies are available, which although effective, aggravate motor symptoms. For this reason, it is important to determine how the control of the hypothalamus-pituitary-gonadal axis is affected in order to develop better strategies for these patients. One way to determine this is using animal models such as the taiep rat, which shows progressive demyelination of the central nervous system, and was used in the present study to characterize the expression of gonadotrophin-releasing hormone (GnRH), Kisspeptin, and kisspeptin receptor (Kiss1R) and luteinizing hormone (LH) secretion. The expression of kisspeptin, GnRH, and Kiss1R was determined at the hypothalamic level by immunofluorescence and serum LH levels were determined by ELISA. The expression of kisspeptin at the hypothalamic level showed sexual dimorphism, where there was an increase in males and a decrease in females during oestrus. There was no change in the expression of GnRH or kisspeptin receptor, regardless of sex. However, a decrease in serum LH concentration was observed in both sexes. The taiep rat showed changes in the expression of kisspeptin at the hypothalamic level. These changes are different from those reported in the literature with the use of animals with experimental allergic encephalomyelitis, this is because both animal models represent different degrees of progression of multiple sclerosis. Our results suggest that the effects on the hypothalamus-pituitary-gonadal axis depend on the differences between the demyelinating processes, their progression, and even individual factors, and it is thus important that fertility treatments are individualized to maximize therapeutic effects.


Asunto(s)
Enfermedades Desmielinizantes , Hormona Liberadora de Gonadotropina , Kisspeptinas , Esclerosis Múltiple , Receptores de Kisspeptina-1 , Animales , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Femenino , Hormona Liberadora de Gonadotropina/biosíntesis , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/biosíntesis , Hormona Luteinizante/sangre , Masculino , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Calidad de Vida , Ratas , Receptores de Kisspeptina-1/biosíntesis
16.
Prensa méd. argent ; 108(2): 75-81, 20220000. graf, tab
Artículo en Español | LILACS, BINACIS | ID: biblio-1368364

RESUMEN

Introducción: A más de un año del inicio de la pandemia, el seguimiento y la atención presencial de pacientes con enfermedades desmielinizantes se ha visto modificado. Según la evidencia, pacientes con diagnóstico de esclerosis múltiple (EM), síndrome desmielinizante aislado (SDA), Síndrome Radiológico Aislado (SRA) o enfermedades del espectro de neuromielitis óptica (NMO) no parecen ser un grupo de riesgo para COVID19 por el hecho de tener la enfermedad. La presencia de ciertas condiciones puede hacerlos susceptibles de cursar infección severa. Se ha descripto una asociación de curso grave con drogas anti CD20, faltan datos sobre la respuesta a vacunas COVID19 en esta población. Objetivos: Establecer características clínico-epidemiológicas de pacientes con enfermedades desmielinizantes que han padecido COVID-19 y describir su evolución. Caracterizar población vacunada, evaluar acceso al seguimiento médico/ terapéutico durante la pandemia. Materiales y métodos: Estudio observacional descriptivo. Se revisaron las historias clínicas de 168 pacientes con EM, SDA y SRA y 33 pacientes con NMO correspondientes al Hospital de Clínicas José de San Martin. Mediante encuesta telefónica se evaluó adherencia al tratamiento, evolución clínica, infección COVID-19, vacunación y acceso durante la pandemia. Resultados: Se encontraron 49 pacientes que desarrollaron COVID-19 en el grupo de pacientes con EM, y 7 en el grupo de NMO. Del primer grupo ninguno requirió internación, mientras que en el segundo, 2 fueron hospitalizados y uno de ellos falleció. La complicación post-COVID más frecuente fue: astenia prolongada y 3 pacientes presentaron un brote de la enfermedad de base en los 3 meses posteriores. Cerca del 90% de nuestra población ya contaba con al menos 1 dosis de vacuna para SARS-CoV2. Se interrogó sobre el acceso a la consulta neurológica y casi el 70% de los pacientes otorgó máximo puntaje al acceso a consultas virtuales. Conclusión: Los pacientes con enfermedades desmielinizantes que cursaron COVID-19 no tuvieron complicaciones severas por la infección, con solamente 2 pacientes cursando un brote en los 3 meses posteriores. No observamos reacciones adversas severas post vaccinales, ni infección posterior, sólo 2 pacientes presentaron un brote en el período post aplicación. Gran cantidad de pacientes percibieron acceso fluido a sus neurólogos de manera virtual, lo que podría relacionarse con alta tasa de adherencia a sus tratamientos a pesar de la limitación a la consulta presencial.


Introduction: More than a year after the start of the pandemic, the follow-up and face-to-face care of patients with demyelinating diseases has been modified. According to the evidence, patients with a diagnosis of multiple sclerosis (MS), isolated demyelinating syndrome (ADS), Isolated Radiological Syndrome (RAS) or neuromyelitis optica (NMO) spectrum diseases do not seem to be a risk group for COVID19 due to the fact that they have the disease. The presence of certain conditions can make them susceptible to severe infection. A severe course association with anti-CD20 drugs has been described, data on the response to COVID19 vaccines in this population are lacking. Objectives: To establish clinical-epidemiological characteristics of patients with demyelinating diseases who have suffered from COVID-19 and describe their evolution. Characterize the vaccinated population, evaluate access to medical/therapeutic follow-up during the pandemic. Materials and methods: Descriptive observational study. The medical records of 168 patients with MS, ADS and ARS and 33 patients with NMO corresponding to the Hospital de Clínicas José de San Martin were reviewed. Through a telephone survey, adherence to treatment, clinical evolution, COVID-19 infection, vaccination, and access during the pandemic were evaluated. Results: 49 patients who developed COVID-19 were found in the MS patient group, and 7 in the NMO group. Of the first group, none required hospitalization, unlike in the second, 2 were hospitalized and one of them died. The most frequent post-COVID complication was: prolonged asthenia and 3 patients presented an outbreak of the underlying disease in the following 3 months. Close to 90% of our population already had at least 1 dose of SARS-CoV2 vaccine. Access to the neurological consultation was questioned and almost 70% of the patients gave the highest score to access to virtual consultations. Conclusion: Patients with demyelinating diseases who had COVID-19 did not have severe complications from the infection, with only 2 patients having an outbreak in the subsequent 3 months. We did not observe severe post-vaccinal adverse reactions, nor subsequent infection, only 2 patients presented an outbreak in the post-application period. A large number of patients perceived fluid access to their neurologists virtually, which could be related to a high rate of adherence to their treatments despite the limitation to face-to-face consultation


Asunto(s)
Humanos , Evolución Clínica , Epidemiología Descriptiva , Estudios Retrospectivos , Enfermedades Desmielinizantes/terapia , Cuidados Posteriores , Cumplimiento y Adherencia al Tratamiento , Vacunas contra la COVID-19 , COVID-19/terapia , Esclerosis Múltiple/diagnóstico
17.
Cereb Cortex ; 32(20): 4397-4421, 2022 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-35076711

RESUMEN

A consensus is yet to be reached regarding the exact prevalence of epileptic seizures or epilepsy in multiple sclerosis (MS). In addition, the underlying pathophysiological basis of the reciprocal interaction among neuroinflammation, demyelination, and epilepsy remains unclear. Therefore, a better understanding of cellular and network mechanisms linking these pathologies is needed. Cuprizone-induced general demyelination in rodents is a valuable model for studying MS pathologies. Here, we studied the relationship among epileptic activity, loss of myelin, and pro-inflammatory cytokines by inducing acute, generalized demyelination in a genetic mouse model of human absence epilepsy, C3H/HeJ mice. Both cellular and network mechanisms were studied using in vivo and in vitro electrophysiological techniques. We found that acute, generalized demyelination in C3H/HeJ mice resulted in a lower number of spike-wave discharges, increased cortical theta oscillations, and reduction of slow rhythmic intrathalamic burst activity. In addition, generalized demyelination resulted in a significant reduction in the amplitude of the hyperpolarization-activated inward current (Ih) in thalamic relay cells, which was accompanied by lower surface expression of hyperpolarization-activated, cyclic nucleotide-gated channels, and the phosphorylated form of TRIP8b (pS237-TRIP8b). We suggest that demyelination-related changes in thalamic Ih may be one of the factors defining the prevalence of seizures in MS.


Asunto(s)
Enfermedades Desmielinizantes , Epilepsia Tipo Ausencia , Animales , Corteza Cerebral/fisiología , Cuprizona/metabolismo , Cuprizona/toxicidad , Citocinas/metabolismo , Enfermedades Desmielinizantes/inducido químicamente , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Ratones , Ratones Endogámicos C3H , Neuronas/fisiología , Nucleótidos Cíclicos/metabolismo , Convulsiones , Tálamo/fisiología
18.
Acta Pharmacol Sin ; 43(3): 563-576, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34103690

RESUMEN

Myelin damage and abnormal remyelination processes lead to central nervous system dysfunction. Glial activation-induced microenvironment changes are characteristic features of the diseases with myelin abnormalities. We previously showed that ginsenoside Rg1, a main component of ginseng, ameliorated MPTP-mediated myelin damage in mice, but the underlying mechanisms are unclear. In this study we investigated the effects of Rg1 and mechanisms in cuprizone (CPZ)-induced demyelination mouse model. Mice were treated with CPZ solution (300 mg· kg-1· d-1, ig) for 5 weeks; from week 2, the mice received Rg1 (5, 10, and 20 mg· kg-1· d-1, ig) for 4 weeks. We showed that Rg1 administration dose-dependently alleviated bradykinesia and improved CPZ-disrupted motor coordination ability in CPZ-treated mice. Furthermore, Rg1 administration significantly decreased demyelination and axonal injury in pathological assays. We further revealed that the neuroprotective effects of Rg1 were associated with inhibiting CXCL10-mediated modulation of glial response, which was mediated by NF-κB nuclear translocation and CXCL10 promoter activation. In microglial cell line BV-2, we demonstrated that the effects of Rg1 on pro-inflammatory and migratory phenotypes of microglia were related to CXCL10, while Rg1-induced phagocytosis of microglia was not directly related to CXCL10. In CPZ-induced demyelination mouse model, injection of AAV-CXCL10 shRNA into mouse lateral ventricles 3 weeks prior CPZ treatment occluded the beneficial effects of Rg1 administration in behavioral and pathological assays. In conclusion, CXCL10 mediates the protective role of Rg1 in CPZ-induced demyelination mouse model. This study provides new insight into potential disease-modifying therapies for myelin abnormalities.


Asunto(s)
Quimiocina CXCL10/antagonistas & inhibidores , Enfermedades Desmielinizantes/patología , Ginsenósidos/farmacología , Animales , Cuprizona/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Hipocinesia/patología , Mediadores de Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , FN-kappa B/efectos de los fármacos , Panax/química , Panax/metabolismo , Fagocitosis/efectos de los fármacos , ARN Interferente Pequeño/farmacología
19.
Metab Brain Dis ; 37(1): 197-207, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34757579

RESUMEN

Multiple sclerosis is an inflammatory demyelinating disease that commences to neuronal cell destruction. Recently, a promising evidence of synergic effects of combined supplementation with vitamin D and probiotics in modulating the gut microbiota and metabolome is emerging. Bacillus Coagulans IBRC-M10791 as a novel strain was chosen, prevention and treatment impacts of regular administered were studied in Cuprizone-induced C57bl/6 mouse of demyelination. The mice were divided into six groups and received a daily dose of cuprizone or probiotics. To investigate the effect of probiotic, the IDO-1, CYP27B1, NLRP1, NLRP3, and AIM2 expression were estimated by Real-Time PCR, and IL-4, IL-17, IFN-gamma, and TGF-beta cytokines were measured by ELISA. The results showed that there was significant decrease in IL-17 and IFN-γ and modulatory effects on IL-4 and TGF-ß. On the other hand, we demonstrated that there are significant decrease for expression of IDO-1, CYP27b1, NLRP1, NLRP3 and AIM2 genes in prevention and treatment groups compared to cuprizone group. Also, a significant enhancement in rate of remyelination and alternations proved by LFB staining and Y-Maze test. In conclusion, our study provides insight into how the therapeutic effect of the chosen strain of probiotic was correlated with the modulation of the level of inflammatory and anti-inflammatory cytokines. Further, we demonstrated that the expression of genes related to Tryptophan, Vitamin D and Inflammasome pathways could be affected by B.coagulans. Our study could be beneficial to provide a novel Co-therapeutic strategy for Multiple sclerosis.


Asunto(s)
Enfermedades Desmielinizantes , Esclerosis Múltiple , Probióticos , Animales , Cuprizona/farmacología , Citocinas/genética , Citocinas/metabolismo , Enfermedades Desmielinizantes/inducido químicamente , Modelos Animales de Enfermedad , Inflamasomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/inducido químicamente , Esclerosis Múltiple/tratamiento farmacológico , Probióticos/farmacología , Probióticos/uso terapéutico , Linfocitos T Colaboradores-Inductores
20.
Nat Commun ; 12(1): 7344, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34937876

RESUMEN

Manipulating lymphocyte functions with gene silencing approaches is promising for treating autoimmunity, inflammation, and cancer. Although oligonucleotide therapy has been proven to be successful in treating several conditions, efficient in vivo delivery of oligonucleotide to lymphocyte populations remains a challenge. Here, we demonstrate that intravenous injection of a heteroduplex oligonucleotide (HDO), comprised of an antisense oligonucleotide (ASO) and its complementary RNA conjugated to α-tocopherol, silences lymphocyte endogenous gene expression with higher potency, efficacy, and longer retention time than ASOs. Importantly, reduction of Itga4 by HDO ameliorates symptoms in both adoptive transfer and active experimental autoimmune encephalomyelitis models. Our findings reveal the advantages of HDO with enhanced gene knockdown effect and different delivery mechanisms compared with ASO. Thus, regulation of lymphocyte functions by HDO is a potential therapeutic option for immune-mediated diseases.


Asunto(s)
Linfocitos/metabolismo , Ácidos Nucleicos Heterodúplex/metabolismo , Oligonucleótidos/metabolismo , ARN/metabolismo , Administración Intravenosa , Traslado Adoptivo , Animales , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/inmunología , Enfermedades Desmielinizantes/patología , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Endocitosis/efectos de los fármacos , Femenino , Regulación de la Expresión Génica , Silenciador del Gen , Enfermedad Injerto contra Huésped/genética , Enfermedad Injerto contra Huésped/inmunología , Humanos , Integrina alfa4/genética , Integrina alfa4/metabolismo , Células Jurkat , Masculino , Ratones Endogámicos C57BL , Ácidos Nucleicos Heterodúplex/administración & dosificación , Ácidos Nucleicos Heterodúplex/farmacocinética , Ácidos Nucleicos Heterodúplex/farmacología , Oligonucleótidos/administración & dosificación , Oligonucleótidos/farmacocinética , Oligonucleótidos/farmacología , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Médula Espinal/patología , Distribución Tisular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA